مـنـتـديــات الــبـــاحـــث
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

* المكثفات - نقطة كمومية - خلية نانوية -الفوليرينيات -المورفولوجيا - الغروانيات - تقنية الصل - جل - الجسيمات النانوية

اذهب الى الأسفل

* المكثفات - نقطة كمومية - خلية نانوية -الفوليرينيات -المورفولوجيا - الغروانيات - تقنية الصل - جل - الجسيمات النانوية Empty * المكثفات - نقطة كمومية - خلية نانوية -الفوليرينيات -المورفولوجيا - الغروانيات - تقنية الصل - جل - الجسيمات النانوية

مُساهمة  طارق فتحي الإثنين أغسطس 29, 2016 7:49 pm

المكثفات : آنذاك والآن
يعمل العلماء والمهندسون منذ عقود على جعل الحواسب أصغر حجماً وأكثر فعالية. تعدّ المكثفات عناصر أساسية من الحواسب. المكثفة هي جهاز مكوّن من زوج من المساري يفصلها عازل عن بعضها البعض وكل منها يخزّن شحنة معاكسة. تخزّن المكثفة شحنة عندما يتم إزالتها من الدارة الموصولة إليها، وتحرر الشحنة عندما يتم إعادتها إلى الدارة. وتعتبر المكثّفات أفضل من البطّاريات بحيث أنها تحرر شحنتها بشكل أسرع من البطّاريات.
تتألف المكثّفات التقليدية المعدنية من أسطح معدنية رقيقة ناقلة مفصولة عن بعضها بعازل كهربائي ومن ثم تكدّس أو تلف وتوضع في غلاف. مشكلة هذا النوع من المكثّفات التقليدية أنها تحد من صغر حجم الحاسب الذي يمكن للمهندس تصميمه. وكحل لهذه المشكلة انتقل العلماء والمهندسون إلى استخدام تقانة النانو.
باستخدام تفانة النانو عمل الباحثون على تطوير ما أسموه "المكثفات الدقيقة" (بالإنجليزية: Ultracapacitors)، وهو مصطلح عام يصف المكثّفات التي تحتوي على مكونات نانوية. وهناك أبحاث كثيرة حول المكثّفات الدقيقة بسبب كثافتها الداخلية العالية، وحجمها الصغير، ووثوقيتها، وسعتها العالية. وهذاالنقص في الحجم يزيد من إمكانية تطوير حواسب ودارات أصغر حجماً. وكذلك فإن للمكثّفات الدقيقة القدرة على دعم البطّاريات في السيارات الهجينة عبر تأمين كمية كبيرة من الطاقة خلال تسارع الذروة، مما يسمح للبطّاريات بتأمين الطاقة لوقت أطول أثناء القيادة بسرعة ثايتة على سبيل المثال. وهذا من شأنه أن ينقص من حجم ووزن البطّاريات الكبيرة المستخدمة في السيارات الهجينة وكذلك تخفيف الحمل عن البطّارية، لكن استخدام المكثّفات الدقيقة والبطّاريات معاً يعدّ مكلفاً بسبب الحاجة إلى إلكترونيات تيار مستمر DC إضافية لتنسيق العمل بينهما.
يعدّ الايروجيل الكربوني دقيق المسام أحد المواد التي يتم استخدامها في تصميم المكثّفات الدقيقة، فهو يملك مساحة سطح داخلي كبيرة ويمكن تعديل خواصه عبر تغيير قطر المسام وتوزعها مع إضافة فلزات قلوية بحجم النانو لتعديل ناقليتها.
وكذلك تعد أنابيب النانو الكربونية مادة أخرى يمكن استخدامها في المكثّفات الدقيقة. تصنّع أنابيب النانو الكربونية عبر تبخير الكربون ومن ثم تكثيفه على سطح. وعند تكثيف الكربون يشكّل أنبوباً دقيقاً بحجم النانو مكوّن من ذرات الكربون. ولهذا الأنبوب مساحة سطح كبيرة مما يزيد من كمية الشحنة التي يمكن تخزينها. ويجري البحث حالياً حول الوثوقية المنخفضة والكلفة العالية النتجة عن استخدام أنابيب النانو الكربونية في المكثّفات الدقيقة.
في دراسة حول المكثّفات الدقيقة أو المكتّفات الكبيرة قام باحثون من جامعة Sungkyunkwan في جمهورية كوريا بدراسة إمكانية زيادة سعة المساري عبر إضافة ذرات الفلورين إلى جدران أنابيب النانو الكربونية. كما ذُكر سابقاً، تُعدّ أنابيب النانو الكربونية شكل متزايد من المكثّفات بسبب استقرارها الكيميائي الكبير، ناقليتها العالية، كتلتها الخفيفة ومساحة سطحها الكيبرة. قام الباحثون بإضافة الفلورين إلى أنابيب النانو الكربونية أحادية الجدار (SWCNTs) عند درجة حرراة عالية لربط ذرات الفلورين إلى الجدران. وتقوم ذرات الفلورين المضافة بتغيير الأنابيب النانوية غير القطبية لتصبح جزيئات قطبية. ويمكن أن يُعزى ذلك إلى نقل الشحنة من الفلورين. هذا ينشئ طبقات ثنائي القطب - ثنائي القطب على طول جدران الأنابيب النانوية الكربونية. وبمقارنة الأنابيب التي تم إضافة الفلوين إليها مع الأنابيب في حالتها العادية يظهر اختلاف في السعة. وقد قُرر أن الأنابيب التي تم إضافة الفلورين إليها مفيدة في تصنيع المساري في المكثفات الكهربائية ولتحسين قابلية ترطيبها باستخدام الكهرل المائي، مما يعزز الأداء العام للمكثّفات الكبيرة supercapacitors. بينما جلبت هذه الدراسة مثالاً أكثر كفاءة من المكثفات، لا يعرف إلا القليل عن هذه المكثّفات الجديدة، ويُفتقر إلى تحليل واسع النطاق يكون ضرروياً لأي إنتاج ضخم، ويكون تحديد شروط الإعداد مهمة شاقة للوصول إلى المنتج النهائي.

نقطة كمومية جانبية
تُعَدُ النقطة الكمومية الجانبية (بالإنجليزية: Lateral quantum dot) أحد أنواع النقاط الكمومية والمصنعة بواسطة فرض مساحةٍ صغيرةٍ من الكمون المتناقص في غاز الإلكترون ثنائي الأبعاد (بالإنجليزية: two dimensional electron gas)، من خلال استخدام وسيلة البوابات الإلكترونية، ومما يؤدي إلى أن يتم حجز الإلكترونات أو ثقوب الإلكترونات في مستويات غازات الإلكترون ثنائية الأبعاد. وبمجرد تطبيق حالة الكمون، فمن المفضل على مستوى الطاقة لعددٍ محددٍ من الإلكترونات (أو الثقوب) لأن يظل محجوز أو مقيد في مساحةٍ محددةٍ من غازات الإلكترون ثنائية الأبعاد (بالإنجليزية: 2DEG)، مما يؤدي إلى أن يتم إزالة الحرية ثنائية الأبعاد الباقية و الثلاثة تحجيمات البعدية للإلكترونات أو الثقوب. وهنا تكون غازات الإلكترونات ثنائية الأبعاد محبوسة أو محتجزة فيما بين صفائح أشباه الموصلات ومنها زرنيخيد الإنديوم الثلاثي و زرنيخيد الغاليوم الثلاثي. هذا وتختلف عملية تصنيع النقاط الجانبية كثيراً عن تلك النقاط الكمومية المجمعة ذاتياً.
تصور مبسط
فكر في الموضوع على أنك داخل حجرةٍ ذات أسقفٍ منخفضةٍ ذات جهاز الترامبولين (بالإنجليزية: trampoline) حيث تستطيع أن تدحرج كرة تنس الطاولة (بالإنجليزية: ping pong ball) سواءً حولها أو عبرها. على الرغم من ذلك، فعندما يتم وضع جسماً ثقيلاً في الوسط، فإن كرة تنس الطاولة تتدحرج نحوه في الوسط، وتصبح محاصرة أو مقيدة حينئذٍ. وتمثل البوابة الإلكترونة (والتي يعبر عنها بالجسم الثقيل) ما يتسبب في خفض وتقليص طاقة الكمون (سطح جهاز الترامبولين). كما أن الجسيم (معبراً عنه بكرة تنس الطاولة) لا يستطيع أن يخترق الأرضية، أو السقف أو حتى جوانب الترامبولين؛ ومن ثم يصبح مقيداً أو محتجزاً!

خلية سرطانية نانوية
قدرة هذه الخلايا المنقسمة على غزو Invasion أنسجة مجاورة وتدميرها، أو الانتقال إلى أنسجة بعيدة في عملية نطلق عليها اسم النقيلة. وهذه القدرات هي صفات الورم الخبيث على عكس الورم الحميد، والذي يتميز بنمو محدد وعدم القدرة على الغزو وليس لهُ القدرة على الانتقال أو النقلية. كما يمكن تطور الورم الحميد إلى سرطان خبيث في بعض الأحيان.
الخلايا السرطانية مدمنة على الجلوكوز
الخلايا السرطانية عدوانية جدا، و تتكاثر بسرعة في نفس المكان، و ذلك باستخدام التخمير و لان التخمير غير ممكن مع الأحماض الدهنية ، فهذا يعني أن الخلايا السرطانية لديها حاجة كبيرة للجلوكوز،فهي تحتاج إلى السكر 20 مرة أكثر من الخلايا السليمة لدرجة أن الماسح الضوئي PET يمكن أن يستخدم لمعرفة وجود سرطان في الجسم،فقط من خلال النظر إلى الخلايا التي تستهلك المزيد من الجلوكوز.
فالخلايا السرطانية هي مدمنة على الجلوكوز و همها الوحيد هو العثور الجلوكوز و إذا لم تجد الا الأحماض الدهنية فانها تجوع و بالتالي يقل إنتاج الطاقة الخلوية فتفقد الخلايا السرطانية عدوانيتها و قدرتها على التكاثر ،و يقتصر هذا الامر على الخلايا السرطانية فقط اما باقي الخلايا الاخرى في الجسم فيمكن أن تعيش مع الأحماض الدهنية .
النظام الغذائي الكيتون ضد السرطان
في عام 2007، أجرى الدكتور ميلاني شميت و عالم الأحياء أولريك كامرير في مستشفى Wüzburg، بألمانيا، دراسة سريرية على المرضى الذين يعانون من السرطان، و قاموا باخضاعهم لنظام غدائي فيه نسبة عالية من الدهون ونسبة عالية من البروتين و منخفض جدا في نسبة الكربوهيدرات و يسمى النظام الغذائي الكيتون، فتم منعهم من تناول السكريات،و الحبوب، و المعكرونة، و الأرز، و البطاطس و اعطائهم كمية قليلة جدا من الفواكه و اللحوم الدهنية فقط، و السمك والبيض و المكسرات والقليل من زيت الزيتون و زيت بذور الكتان و بعض الخضروات.
ولكن المستشفى سمح لهم باختبار النظام الغذائي الكيتون فقط على المرضى الذين استنفدوا جميع العلاجات التقليدية ضد السرطان مثل الجراحة، و الإشعاع، و العلاج الكيميائي،و كل العلاجات البديلة الاخرى و هذا يعني أن المرضى كانوا في حالة صحية سيئة للغاية فمنهم من يعاني من سرطان المبيض و سرطان الثدي و الغدد النكفية و العظام و البنكرياس و الغدة الدرقية و المريء و أورام الجهاز العصبي، و قد توفي اثنان منهم في غضون شهر بعد بدء الدراسة وانسحب آخرون في بداية البحث، اما خمسة مرضى الذين امتثلوا للحمية لمدة ثلاثة أشهر فقد تحسنت حالتهم و توقفت اورامهم عن النمو و استقرت حالتهم البدنية ومازالوا على قيد الحياة.
تحذيرات هامة
رغم نجاح هذا النظام الغدائي و فتحه باب الامل عند مرضى السرطان الا ان النظام الغذائي الكيتون يسبب بعض المشاكل، لذلك فمن المستحسن أن يتبع تحت إشراف طبي لانه يمكن أن يسبب التعب المزمن حيث ان الجسم يحتاج بعض الوقت ليعتاد على العمل دون احتياطي السكر كما ان النظام الغذائي الكيتون فقير من حيث بعض المغديات وهي :
=== الألياف === وهذا يسبب الإمساك أو الإسهال ،و من الممكن التخفيف من هذه المشكلة بتناول مكملات الألياف الغذائية مثل سيلليوم أو البكتين .
=== البوتاسيوم === احتياجاتنا من البوتاسيوم نحصل عليها عادة من الفواكه و الخضار و كلها مصادر للكربوهيدرات و بالتالي لابد من تناول مكملات البوتاسيوم أو اختيار الخضار الفقيرة من حيث الكربوهيدرات مثل اللفت ، و الهليون ،و الباذنجان و الخيار و القرنبيط ، و الكرفس ، و الخس ، والكراث ، و الجرجير و الافوكا.
حالات يمنع فيها الخضوع لحمية الكيتون
هناك حالات يمنع فيها اتباع النظام الغذائي الكيتون وهي:
-القصور الكلوي ، و قصور في وظيفة الكبد أو وظيفة القلب.
-السكري المعتمد على الأنسولين وغير المعتمد على الأنسولين في غياب الإشراف الطبي.
-امراض او اضطرابات الأيض مثل البورفيريا ، ونقص كربوكسيلاز البيروفات و الأمراض الوراثية النادرة الأخرى.
-الحمل و الرضاعة الطبيعية.
-هذا النظام ممنوع على أي شخص اتباعه لمدة تتجاوز 4 أسابيع ، من دون إشراف طبي .
– ممنوع فترة النمو اي على الطفل الصغير ، و المراهق .
– ممنوع أثناء العلاج بمدرات للبول أو كورتيكوستيرويد في غياب الإشراف الطبي .
– ممنوع في حالة اضطرابات الأكل .
– ممنوع بعد الجراحة.
الحد من خطر إصابتك بالسرطان
قبل اللجوء إلى النظام الغذائي الكيتون اعلم ان اتباع نظام غذائي منخفض الكربوهيدرات مفيد في الوقاية من السرطان.
وللحد من خطر تغذية الورم المتعطش للجلوكوز يمكنك الالتزام ببعض النصائح: -خفض الاستهلاك الخاص بك من المواد الغذائية المصنعة ، و الصناعية، مثل الوجبات الجاهزة ، الدقيق المكرر ( الأبيض) و الأطعمة المصنوعة منه عامة مثل الخبز الأبيض ، الرغيف الفرنسي الأبيض و المعجنات و المعكرونة البيضاء و كل المشروبات السكرية و العصائر .
-تناول الحبوب بكميات تتناسب مع النشاط البدني الخاص بك و يمكنك عدم تناولها إذا كنت لا تمارس الرياضة.
-الحرص على وجود الالوان في طبقك :الفواكه و الخضار الملونة غنية بالمواد المضادة للأكسدة التي تقلل من الالتهاب مثل العنب البري، و العنب الأحمر، و الطماطم، و الخضراوات الخضراء و هناك بالطبع العديد من الاستثناءات المهمة ، مثل القرنبيط و الفجل و الهليون، فعلى الرغم من أنها بيضاء اللون الا انها جيدة للصحة .
-تجنب قدر الإمكان المشويات و المقالي.
احرص على تناول الدهون و المنتجات ذات النوعية الجيدة مثل الأسماك الصغيرة الزيتية و المكسرات من جميع الأنواع،و زيت الزيتون البكر و زيت بذور اللفت و الأفوكادو ،و البيض العضوي المخصب مع اوميجا 3 إذا كان ذلك ممكنا .
تجنب المنتجات الصناعية الدهنية مثل الصلصات و المايونيز ، و بالطبع البسكويت المحمص و المملح .
التكيف مع نمط حياتك للحد من أسباب التوتر و ذلك بتغيير العمل، و مكان الإقامة ، و الأنشطة إذا كانت لا تسمح لك أن تشعر بالراحة إلى حد معقول في حياتك .
الحد من استخدام المواد السامة في منزلك مثل المنتجات المنزلية، و الورنيش ، و الغراء والبلاستيك.

الفوليرينيات والنانو
عد الفوليرينيات fullerenes أحد فئات متآصلات الكربون والتي من الناحية المصطلحية تعد صحائف الجرافين والملفوفة داخل أنابيب أو كرات. وتتضمن الأنابيب النانوية الكربونية (أو أنابيب السيليكون النانوية) ويعد كلاهما ذات أهمية كبيرة بسبب قوتهما الميكانيكية وكذلك بسبب خصائصهما الإلكترونية.
وفي أثناء العقد الماضي، كانت الخصائص الكيميائية والفيزيائية للفورينيات موضوعاً هاماً في مجال البحث العلمي والتنمية كذلك، إلا أنها ما زالت حتى وقتنا هذا كذلك. فقد كان الفولرين موضوعاً للدراسة في إحدى الدراسات (الهادفة إلى دراسة استخداماتها في المجال الطبي) والتي أجريت في إبريل 2003: حيث ربطت بعض المضادات الحيوية لبنية البكتريا المقاومة، بل إنها استهدفت بعض أنواع الخلايا السرطانية ومنها الميلانوما melanoma. إلا أن عدد أكتوبر 2005 من دورية Chemistry and Biology اشتمل على مقالةٍ تصف استخدام الفوليرينيات كعوامل مضادة للميكروبات نشطة ضوئياً. وفي مجال تقانة النانو تعد كلٌ من مقاومة الحرارة والموصلية الفائقة superconductivity من بين الخصائص التي تجذب انتباه الأأبحاث العلمية الحديثة.
وتستخدم تلك الطريقة العامة في إنتاج الفوليرينات من خلال إرسال تيار ضخم بين قطبي متجلورين من الجرافيت في غلافٍ خامل. وتبرد بلازما الكربون الناتجة والمقوسة بين القطبي إلى بقايا سخامية والتي منها يمكن عزل كمية كبيرة من الفلورينيات.
وقد أجريت العديد من الحسابات باستخدام طرق (ab-initio Quantum Methods) والمطبقة على الفلورينيات. حيث يستطيع المرء الحصول على مطياف تحت الحمراء ومطياف رامان وكذلك مطياف فوق البنفسجية من خلال طريقتي النظرية الدالية للكثافة DFT و TDDFT. حيث يتم مقارنة نتائج تلك الحسابات بالحسابات التجريبية.

السلامة والجسيمات النانوية
علم السموم النانوي، الجسيم وتنظيم تقنية النانو
تمثل الجسيمات النانوية مصدراً للخطورة المحتملة سواءً الطبية أو البيئية.
ويرجع معظم تلك المخاطر إلى ارتفاع نسبة السطح إلى الحجم، والتي تجعل من الجسيمات متفاعلةً بصورةٍ عاليةٍ أو محفزةً كذلك.
كما أنها أيضاً قادرةً على النفاذ خلال أغشية الخلية بالكائنات الحية، بالإضافة إلى أن تفاعلاتها مع الأنظمة البيولوجية الحيوية مجهولة. على الرغم من ذلك، تميل الجسيمات النانوية الحرة في البيئة إلى التكتل والتجمع ومن ثم تغادر النظام النانوي، كما توفر الطبيعة ذاتها العديد من الجسيمات النانوية والتي قد تكون الكائنات الحية على الأرض طورت من مناعتها تجاهها (و منها جزيئات الملح من الضبوب المحيطي التربين من النباتات، بالإضافة إلى الغبار المنبعث من الانفجارات البركانية. هذا بالإضافة إلى أن المزيد من المعلومات تم رصدها في مقالة تقانة الصغائر
وصف الجسيمات النانوية
تمثل عملية وصف الجسيمات النانوية مرحلةً ضروريةً لفهم وضبط كلٍ من مجالي تركيب وتطبيقات الجسيمات النانوية. وتتم عملية الوصف من خلال استخدام مجموعةٍ متنوعةٍ من التقنيات والتي تشتق أساساً من علم المواد. ومن التقنيات العامة المجهر الإلكتروني الماسح (TEM, SEM)، مجهر الطاقة الذرية (AFM)، تبعثر الضوء الديناميكي (DLS)، مطيافية أشعة اكس الضوئية الالكترونية (FTIR)، حيود المسحوق بالأشعة السينية (XRD)، مطياف تحويل فورييه بالأشعة تحت الحمراء (FTIR)، مصفوفة امتزاز الليزر/وقت التأيين الخاص بطيف الكتلة الطيران (MALDI-TOF)، طيف الأشعة فوق البنفسجية المرئية، تداخل ثنائي الأقطاب والرنين النووي المغناطيسي (NMR).
في حين كانت النظرية معروفة منذ ما يقرب على قرنٍ من الزمن (انظر روبرت براون)، إلا أن تقنية التحليل التتبعي لتقانة النانو (NTA) تسمح بالتتبع المباشر للحركة البراونية ومن ثم تتيح تلك الطريقة بتحديد حجم الجسيمات الفردية بالمحلول.

المورفولوجيا
اعتاد العلماء تسمية جسيماتهم تيمناً بالأشكال الواقعية المحيطة بهم والتي قد يمثلونها. حيث ظهرت في أطروحاتهم العلمية وأدبياتهم الكثير من تلك المصطلحات ومنها الكرات النانوية، الشعاب النانوية،
والصناديق النانوية.
كما قد تظهر تلك الأشكال كتأثيرٍ تلقائيٍ لعامل نموذجي أو موجه متواجد في التركيبات ومنها مستحلبات مسيلية أو مسام أكسيد الألومونيوم، أو أنها قد تتواجد من أنماط النمو الكريستالية الفطرية والخاصة بالمواد نفسها.
كما أن بعض تلك الأشكال قد تخدم هدفاً خاصاً في حد ذاته ومنها الأنابيب النانوية الكربونية الطويلة والمستخدمة لوصل تقاطعاً كهربائياً، أو حتى مجرد للفضول العلمي ومنها النجمات المتواجدة على يسار النص.
و غالباً ما تتخذ الجسيمات الغير بلورية أشكالاً كرويةً (و ذلك نتيجة توحد خواصها التريكيبية الدقيقة) – في حين تتماثل الشعيرات الكريستالية الدقيقة متغايرة الشكل مع طبيعتها البلورية الخاصة. ويتم الإشارة إلى النهاية الصغيرة لمدى الحجم علها أنها تجمعٌ. وتمثل كلٌ من الكرات والقضبان والألياف بالإضافة إلى الكؤوس نماذجاً للأشكال التي تتخذها الجسيمات في نموها. وتسمى دراسة الجسيمات الدقيقة micromeritics.

المواد الغروية (الغروانيات)
نجمات نانوية لأكسيد فاناديوم رباعي
استخدم مصطلح غرواني بصورةٍ مبدئيةٍ لوصف قطاعٍ عريضٍ من خليط السائل –الصلب (و / أو السائل-السائل)، حيث يحتوي كلٌ منهما على جزيئاتٍ صلبةٍ متقطعةٍ (و / أو سائلةٍ) واليت تتناثر لدرجاتٍ مختلفةٍ من الوسيط السائل. وقد خصص ذلك المصطلح لحجم الجسيمات الفردية والتي تكون أكبر من أبعاد النواة ولكنها صغيرةً بصورةٍ كافيةٍ لعرض الحركة البراونية. فلو كانت الجسيمات كبيرةٍ بصورةٍ كافيةٍ، فإن سلوكها الدينامي في أية لحظةٍ معينةٍ من الزمن في المحلول يتم التحكم فيها وضبطها من خلال قوى الجاذبية والترسب. أما لو كانت أحجامها صغيرةً بصورةٍ كافيةٍ لتتشكل كغروانيات أو غرويات، فإن حركتها العشوائية بالمحلول قد تعزو إلى القصف الجماعي لعددٍ لامتناهٍ من الجزيئات المهتاجة حرارياً بالوسيط المعلق أو المحلول السائل، وذلك كما قام ألبرت أينشتاين بوصفه في أطروحته العلمية. حيث أثبت أينشتاين وجود جزيئات الماء من خلال الإقرار أن سلوك الجسيم الغير منتظم ذلك يمكن وصفه على نحوٍ كافٍ باستخدام نظرية الحركة البراونية، حيث يكون الترسيب نتيجةً متوقعةً طويلة الأمد. ويتراوح ذلك المدى الحرج في الحجم (قياس الجسيم) من (10−9 م) نانومتر إلى (10−6 م) ميكرومتر

تقنية الصل - جل
تمثل عملية الصل-جيل أسلوب كيميائي رطب والتي تعرف أيضاً بأنها (عملية ترسيب المحلول اليكميائي)، حيث تستخدم حديثاً في مجالات علوم المواد وهندسة السيراميك أو هندسة الخزف. وتستخدم تلك الطرق بصورةٍ أساسيةٍ في تصنيع المواد (و بصورةٍ متماثلة الأكسيد المعدني) بدايةً من المحلول الكيميائي (وتشير صول إلى المحلول) والذي يمثل سابقةً لشبكةٍ متكاملةٍ (أو جل) من جزيئاتٍ متقطعةٍ أو شبكات المكوثرات أو البوليمرات.
و من السوابق المماثلة كلٌ من اللافلزات القابلة للاشتعال الكلوريد الفلزي، واللذان يسفران عن وقوع تفاعلي الحلمأة والتكثيف المتعدد للجزيئات وذلك بهدف تشكيل إما شبكة من "نسيج ممطوط صلب"" أو محلول غرواني (أو عملية تشتت أو تذبذب) – وهو نظام مكون من جزيئات دقيقة الصغر متقطعة (غالباً ما تكون مادة لابلورية) والتي تتشتت أو تتبعثر إلى درجاتٍ عدةٍ في السائل العائل لها. وتتضمن عملية تكوين أكسيد المعدن أو الفلز ربط مراكز المعدن بواسطة روابط أو جسورoxo (M-O-M) و hydroxo (M-OH-M)، ومن ثم إنتاج مكوثرات (بوليمرات) OXO فلزية أو بوليمرات hydroxo المعدنية بالمحلول. ومن ثم يرتقي المحلول نحو تكوين أنظمة شبيهة بالجيل أو الهلام مزدوجة المرحلة والتي تشتمل على كلٍ من المرحلة السائلة والمرحلة الصلبة واللتين يتراوح تشكيلهما من الجزيئات المتقطعة إلى شبكات المكوثر أو البوليمر المستمرة.
أما في حالة الغروانيات، فإن تكسير حجم الجسيمات (أو كثافة الجسيم) قد تكون منخفضة جداً بصورةٍ تجعل كميةً ضروريةً من السائل في حاجةٍ ليتم إزالتها مبدئياً من أجل التعرف على الخصائص المادة الشبيهة بالهلام. ويمكن استكمال مثل تلك العملية من خلال مجموعةٍ من الطرق. إلا أن أسهلها إتاحة الوقت الكافي لحدوث الترسيب، ومن ثم سكب باقي السائل. كما يمكن الاستفادة من عملية التثفيل في تسريع عملية انفصال المرحلة
تتطلب مرحلة إزالة السائل المتبقي (المذيب) عملية تجفيف، والتي يصاحبها بصورةٍ مطابقةٍ مقدارٍ ضروريٍ من الانكماش والتكثيف. ويتحدد المقدار الذي يمكن عنده التخلص من المذيب بواسطة توزيع المسامية بالجل أو الهلام. ومن ثم سيتأثر أقصى تركيبٍ دقيقٍ للمنتج النهائي بصورةٍ واضحةٍ قويةٍ بالتغيرات التي تم تنفيذها خلال تلك المرحلة من عملية المعالجة. بعد ذلك، غالباً ما تكون هناك حاجةً ضروريةً للمعالجة الحرارية أو المعالجة بالنار بهدف لصالح مزيدٍ من التكثيف البوليمري وزيادة الخواص الميكانيكية والثبات البنائي من خلال عمليات التلبد النهائي، التكثيف، ونمو الحبوب. كما تتمثل أحد المزايا البارزة لاستخدام تلك المنهجية المناقضة لأساليب المعالجة الأكثر تقليديةٍ في أن التكثيف غاباً ما يمكن الحصول عليه في درجات حرارةٍ أكثر انخفاضاً.
يمثل أسلوب (صول-جيل) تقنيةً رخيصةً ومنخفضة الحرارة والتي تسمح بالتحكم بالتركيب الكيميائي للمنتج. حتى الكميات الصغيرة من عوامل الإشابة ومنها الأصباغ العضوية والمعادن الأرضية النادرة يمكن تقديمها ضمن منتجات الجل أو الهلام والتي ينتهي بها الحال بالتفرق والتشتت بصورةٍ متسقةٍ في المنتج النهائي. وهي قد تستخدم في عملية معالجة إنتاج الخزف وتصنيعه كذلك كمادة صبٍ للاستثمار أو كوسيلةٍ لإنتاج رقائقٍ رفيعةٍ من الأكاسيد المعدنية المستخدمة للأغراض المختلفة. كما تتواجد العديد من التطبيقات للمواد المشتقة من تقانة (صول-جل)، سواءً في مجال البصريات الإلكترونيات الطاقة والفضاء وكذلك الاستشعار الحيوي، بالإضافة إلى مجال الطب (على سبيل المثال عرض الأدوية الخاضعة للرقابة) وعملية الفصل (و مثال ذلك تقنية التفريق اللوني أو الاستشراب).

تصنيع الجسيمات النانوية
تتواجد العديد من الطرق لتصنيع الجسيمات النانوية ومنها الاحتكاك أو الاستنزاف والانحلال الحراري. ففي عملية الاحتكاك تحتك الجزيئات الكبيرة والدقيقة في طاحونةٍ كرويةٍ كوكبيةٍ، أو أية آليةٍ أخرى لتقليص الحجم. وتصنف الجزيئات الناجمة على أنها هوائية بهدف استرجاع الجسيمات النانوية. أما في عملية الانحلال الحراري تجبر السوائل والغازات على المرور عبر فتحةٍ في ظروف الضغط العالي أو الاحتراق. حيث تصنف المادة الصلبة (صورةً من صور الدخان الأسود) الناجمة على أنها هوائية بهدف استرجاع جزيئات الأكسيد من تلك الغازات الناجمة عن عملية الانحلال تلك. وغالباً ما ينجم عن عملية الانحلال الحراري تجمعاتٍ وكتلٍ بدلاً من جزيئاتٍ أوليةٍ منفردةٍ.
و يمكن إنتاج الطاقة المطلوبة لتبخير الجزيئات دقيقة الحجم من خلال البلازما الحرارية. وتندرج درجات حرارة البلازما الحرارية ضمن مجال ترتيب 10000 ك، والتي تسهل من تبخر المسحوق الصلب، حيث تتشكل الجسيمات النانوية في أثناء عملية التبريد خلال نفاذها من منطقة البلازما. وتعد أهم صور بطاريات البلازما الحرارية والمستخدمة في مجال تصنيع الجسيمات النانوية بطارية dc plasma jet وبطارية dc arc plasma وكذلك بطارية بلازما إنتاج ترددات الراديو. وما يحدث في مفاعلات بلازما القوس (arc plasma) هو أن الطاقة اللازمة لعملية التبخر ورد الفعل يتم توفيرها من خلال قوس إلكتروني والذي يتشكل تحت ضغط جوي. ويتم التبريد السريع للخليط الناجم من غاز البلازما وبخار السيليكون من خلال تبريده مع الأكسجين، وبالتالي ضمان جودة منتج السيليكا المتبخرة. أما في بطاريات بلازما إنتاج ترددات الراديو، فإن الطاقة المصاحبة للبلازما تستكمل من خلال مجال كهرومغناطيسي منتج بواسطة ملف التخليق. ولا يتصل غاز البلازما مع الأقطاب الكهربائية، وبالتالي يمحو المصادر المتاحة للاحتواء ومن ثم يسمح بحدوث عملية مثل بطاريات البلازما تلك والمصاحبة لقطاع عريض من الغازات ومنها الخاملة والمقلصة والمؤكسدة والأجواء التآكلية الأخرى.
و يترواح التردد العامل فيما بين 200 كيلو هيرتز و40 ميجا هيرتز. حيث تعمل الوحدات المعملية تحت مستويات قوة بترتيب من 30- إلى 50 ك وات، في حين أ، الوحدات الصناعية الضخمة قد تم اختبارها تحت مستويات قوة تصل إلى 1 ميجا وات. وبما أن وقت الإقامة لقطرات التغذية المحقونة في البلازما قصيرٌ جداً، فمن المهم أن تكون أحجام القطرات صغيرةً بصورةٍ مكافيةٍ لإحداث عملية تبخرٍ كاملٍ. واستخدمت طريقة بلازما إنتاج التردد بهدف تركيب وتصنيع مواد الجسيمات النانوية المختلفة، وعلى سبيل المثال تركيب جسيمات الخزف النانوية المتنوعة ومنها أكاسيد، كربورات، كربيدات ونيتريدات للـ (Ti و SI) (انظر تقنية إنتاج البلازما).
و غالباً ما يستخدم تكثيف الغازات الخاملة في عملية إنتاج الجسيمات النانوية من المعادن ذات نقاط الزوبان المنخفضة. حيث يتبخر المعدن في غرفةٍ محكمةٍ ثم يتم تبريده بصورةٍ فائقةٍ مع تدفقٍ لتيار غازٍ خاملٍ. ثم يتكثف البخار المعدني المبرد بشدة ليصبح في صورة جزيئاتٍ نانوية الحجم، والتي يجرها تيار الغاز الخامل المتدفق ويرسبها في طبقةٍ سفليةٍ.

خصائص الجسيمات النانوية
مسحوق السيليكون النانوي
تلعب الجسيمات النانوية فائدةً كبيرةً حيث أنها تمثل جسراً للتواصل بين المواد السائبة والبنى الذرية والجزيئية. حيث يجب أن يكون للمادة السائبة خصائص ثابتة فيزيائياً بغض النظر عن حجمها، إلا أنه غالباً ما يتم ملاحظة الخصائص القائمة على الحجم النانوي. ومن ثم، تغير خصائص المادة باقتراب حجمها من المقياس النانوي، حيث تصبح لنسبة الذرات على سطح المادة أهميتها الخاصة. أما بالنسبة للمواد السائبة والتي يزيد حجمها عن واحد ميكرون، فإن نسبة الذراتن على السطح ليست مهمة في علاقتها مع عدد الذرات في مجموع المادة. كما قد تعزو الخصائص المثيرة وفي بعض الأحيان غير المتوقعة للجسيمات النانوية بصورةٍ كبيرةٍ إلى مساحة سطح المادة الضخم، والتي تسيطر على التوزيعات التي تتم في مجموع تلك المادة.
و على سبيل المثال، غالباً ما تكون الجسيمات النانوية للذهب الأصفر والسيليكون الرمادي حمراء اللون؛ حيث تذوب جزيئات الذهب عند درجات حرارةٍ أقل بمقدار(~ 300 درجةٍ مئويةٍ لحجم 2.5 نانو متر) عن ألواح الذهب والتي تتطلب (1064 درجةٍ مئويةٍ)
كما أن امتصاص الأشعة الشمسية في الخلايا الضوئية يكون أعلى في المواد المكونة من جزيئات نانوية عن تلك المتواجدة في الطبقات الرقيقة بالألواح المستمرة للمادة – حيث أنه كلما قل حجم الجسيم، كلما تزايد امتصاص الأشعة الشمسية.
و تتضمن تغيرات الخصائص المعتمدة على الحجم والتي منها التقييد (الحبس) الكمومي quantum confinement في جزيئات أشباه الموصلات، وكذلك صدى سطح البلازمون surface plasmon resonance في بعض الجسيمات المعدنية، بالإضافة إلى البارامغناطيسية الفائقة superparamagnetism في المواد المغناطيسية. ومن المفارقات أن تغيرات الخصائص الفيزيائية ليست دائماً غير مرغوبة. حيث أن المواد العازلة كهربائياً الشفافة الأصغر من 10 نانومتر لها القدرة على تحويل إتجاه مغناطيسيتها استخدام الطاقة الحرارية لدرجة حرارة الغرفة، ومن ثم تصبح غير ملائمة لتخزين الذاكرة.
صار ممكناً الحصول على المعلقات من الجسيمات النانوية منذ أن أصبح تفاعل سطح الجسيم مع المذيب قوياً بدرجةٍ كافيةٍ للتغلب على اختلافات الكثافة، والتي دون ذلك غالباً ما ينجم عنها مادةً إما تطفو أو تغوص في السائل. كما توجد للجسيمات النانوية خصائصاً بصريةً غير متوقعةٍ حيث أنها صغيرة بدرجةٍ كافيةٍ لتحجز الإلكترونات وتسفر عن ظهور مجموعةٍ من التأثيرات الكمومية. وعلى سبيل المثال جسيمات الذهب النانوية تظهر حمراء غامقة اللون إلى سوداء في المحلول.
و توفر مساحة السطح العالية إلى نسبة حجم الجزيئات النانوية قوةً هائلةً دافعةً للانتشار، وخاصةً في درجات الحرارة المرتفعة. إلا أن عملية التلبيد قد تقع في درجات حرارةٍ أقل، وعلى مستويات زمنيةٍ أقصر كذلك عن تلك المطلوبة للجسيمات الأكبر حجماً. إلا أن هذا لا يؤثر نظرياً على كثافة المنتج النهائي، ذلك على الرغم من أن تدفق الصعوبات ونزعة الجسيمات النانوية للتكتل والتجمع تعقد من الأمور. علاوةً على ذلك، فقد وجد أن الجزيئات النانوية تنقل بعض الخصائص الإضافية الأخرى لمنتجات الحياة اليومية. وعلى سبيل المثال، وجود الجسيمات النانوية لثاني أكسيد التيتانيوم تنقل ما نطلق عليه التأثير ذاتي التنظيف، وأن الحجم يكون في مدى القياس النانوي، ومن ثم لا يمكن ملاحظة الجسيمات. وقد وجد أن لجسيمات أكسيد الزنك خصائصٌ معيقةٌ واقيةً من الأشعة فوق البنفسجية بصورةٍ أقوى مقارنةً ببديلها السائب. وهذا يمثل أحد الأسباب الكامنة وراء غالبية استخدامها في إعداد المستحضرات المضادة لأشعة الشمس.
هذا بالإضافة إلى أن صورتها غالباً مستقرة.
و تزيد جزيئات الطين النانوية من التعزيز في حالة اندماجها مع مصفوفات البوليمر أو المكوثر، مما يسفر عن إنتاج بلاستيكيات أقوى، والتي تتسم بأنها يمكن التثبت منها من خلال درجة حرارة تحول زجاجي أعلى بالإضافة إلى اختبارات الخواص الميكانيكية الأخرى. وتتسم تلك الجسيمات النانوية بالصلابة والتي تنقل خصائصها إلى البوليمر (البلاستيك). كما تم توصيل الجسيمات النانوية كذلك بالألياف النسيجية بهدف إنتاج أقمشة ذكية وظيفية.
أصبح من الممكن تصنيع جسيمات الفلزات والعوازل الكهربائية وأشباه الموصلات النانوية، بالإضافة إلى الهياكل الهجينة (و منها مثلاً قذيفة المحور أو الجوهر]]. كما يمكن تصنيف الجسيمات النانوية المصنعة من مادة شبه موصلة على أنها من النقاط الكمومية وذلك لو كان حجمها صغيراً بصورةٍ كافيةٍ (عادةً ما تكون أقل من 10 نانومتر) حيث يحدق هنا تكميماً لمستويات الطاقة الكهربائية. وتستخدم مثل تلك الجزيئات النانوية في مجال التطبيقات الطبية الحيوية ومنها ناقل الدواء أو عوامل التصوير.
كما أُمكن تصنيع الجسيمات النانوية شبه الصلبة واللينة كذلك. وتعد الحويصلية أحد أنماط لاجسيمات النانوية لطبيعة المواد شبه الصلبة. وتستخدم العديد من أشكال الجسيمات النانوية الحويصلية في العيادات العلاجية كأنظمة التوصيل للأدوية المقاومة للسرطانات والتطعيمات

الإتساق النانوي
تتطلب عمليتي المعالجة والتركيب الكيميائي للمكونات التقنية عالية الأداء بالقطاعات الخاصة، الصناعية والعسكرية استخدام الخزفيات عالية النقاء، المكوثرات أو البوليمرات، الخزف الزجاجي، وكذلك مركبات المواد. وفي الأجسام المكثفة المكونة من المساحيق الناعمة، غالباً ما تسفر أحجام وأشكال الجسيمات النانوية الغير منتظمة في المسحوق المثالي، عن مورفولوجياتٍ للتعبئة الغير متماثلة والتي ينتج عنها تباينات كثافة التعبئة في علبة المسحوق.
كما قد يثير تكتيل المساحيق اللاإرادي الناتج عن قوى فان دير فالس الجاذبة انعدام التجانس للبنيات الدقيقة. وترتبط الضغوط المختلفة والتي تتطور نتيجةً لعملية الانكماش الغير متسقة مباشرةً مع المعدل الذي عنده يمكن إزالة المذيب، ومن ثم يصبح معتمداً بصورةٍ عاليةٍ على توزيع المسامية. وتصاحب تلك الضغوط عملية تحولٍ للبلاستيك إلى صورةٍ هشةٍ في الأجسام الصلبة، ومن ثم يكون قابلاً للامتداد المتصدع في الجسم المتسق لو لم يتم تخفيفه.
هذا بالإضافة إلى أن التقلبات التي تحدث في كثافة التعليب بالمادة المدمجة كما يتم إعدادها من أجل وضعها بالفرن غالباً ما تتضخم خلال عملية التلبيد، متضمنةً عملية التكثيف كذلك. كما تم توضيح أن بعض المسام والعيوب البنائية الأخرى والمصاحبة لتباينات الكثافة تلعب دوراً حاسماً في عملية التلبيد من خلال النمو ومن ثم الحد من كثافة النقطة الطرفية. كما تم توضيح كذلك أن الضغوط المختلفة الناجمة عن عملية التكثيف المتغايرة قد تسفر عن انتشار الشقوق الداخلية، حيث تصبح العيوب حينئذٍ قوةً مسيطرةً.
نتيجةً لذلك يبدو أنه من المرغوب أن يتم معالجة المادة بطريقةٍ تكون خلالها متسقةً فيزيائياً مع مراعاة توزيع المكونات والمسامية، بدلاً من استخدام توزيعات حجم الجسيم والتي تزيد وتضخم من الكثافة الخضراء. إن احتواء التجمع المتفرق بصورةٍ موحدةٍ للجسيمات المتفاعلة بقوة في المحلول (المُعَلَق) تتطلب تحكماً تاماً في القوى الموجودة بين الجسيمات. وتوفر الجسيمات النانوية أحادية التشتت والغرويات مثل تلك الإمكانية.
و قد تستقر المساحيق أحادية التفريق للسيليكا الغروانية، على سبيل المثال، بصورةٍ كافيةٍ لضمان درجةٍ عاليةٍ من النظام بالكرسيتال أو المادة الصلبة الغروانية كثيرة البلورات والتي تنجم عن عملية التجمع. وتتحدد درجة النظام بالوقت والمساحة المسموح بهما للارتباطات الناشئة ذات المدى الأطول. كما تعد تلك التركيبات الغروانية كثيرة البلورات المعيبة العناصر الأساسية لعلم المواد الغروانية شبه دقيقة القياس، ومن ثم توفر الخطوة الأولى في مجال تطوير فهماً أكثر دقة لآليات الارتقاء في البنيات الدقيقة في المواد والمكونات عالية الأداء

خلفية الجسيمات النانوية
على الرغم من أن الجسيمات النانوية تعد اختراعاً في مجال العلم الحديث، إلا أن لها تاريخاً قديماً جداً. حيث كان الحرفيين يستخدمون الجسيمات النانوية منذ القرن التاسع الميلادي في بلاد ما بين النهرين بهدف الحصول على تأثيرٍ براقٍ لأسطح الأواني والقدور.
و حتى في أيامنا هذه، فإن صناعة الفخار في العصور الوسطى وعصر النهضة غالباً ما يتم اكسابها بريقاً معدنياً ملوناً إما بالذهب أو النحاس. وينتج هذا البريق عن استخدام طبقةٍ معدنيةٍ على السطح الشفاف أثناء عملية التزجيج. وقد تظل طبقة البريق أو اللمعان مرئية لو كان للشريط مقاومة لأكسدة الجو وظرف المناخ الأخرى.
و يكون البريق أو اللمعان متواجداً بالطبقة نفسها، والتي تحتوى أو تشتمل على جسيمات الفضة والنحاس والمتناثرة بصورةٍ متجانسةٍ في المصفوفة الزجاجية بالخزف المصقول. وقد انتج الحرفيين المهنيين تلك الجسيمات النانوية من خلال إضافة النحاس وأملاح الفضة وكذلك الأكاسيد المختلفة جميعها مع الخل وأكسيد الرصاص بالإضافة إلى الطين أو الصلصال، على سطح الأواني الفخارية المصقولة مسبقاً. ثم يتم وضح ذلك الجسم بعد ذلك داخل فرنٍ والذي يتم تسخينه ليصل إلى درجة حرارة 600 درجة مؤية في جوٍ تقليصيٍ.
و تصبح الطبقة المصقولة ملساء بفعل حرارة التسخين، مما يؤدي إلى نزوح أيونات النحاس والفضة إلى الطبقات الخارجية من تلك الطبقة المصقولة. ويُخَفِض جو التخفيض الأيونات عائدةً إلى المعادن، والتي تتجمع بعد ذلك معاً مشكلةً الجسيمات النانوية والتي تعطي اللون والتأثيرات البصرية المقصودة.
و من ثم فقد أظهرت أساليب التلميع أن المهنيين القدامى كانت لديهم معرفةً عمليةً أكثر تعقيداً بالمواد. كما نبع ذلك الأسلوب كذلك في العالم الإسلامي. ونتيجة أنه من المحرم على المسلمين أن يستخدموا الذهب في العروض الفنية، فقد فرض ذلك الوضع عليهم ضرورة الحاجة إلى إلى ابتكار طريقةٍ يحصلون منها على نفس التأثير بدون استخدام الذهب الحقيقي. وكان الحل من خلال استخدام البريق أو اللمعان.
و كان مايكل فاراداي أول من قدم وصفاً بمعناه العلمي للخصائص والسمات البصرية للمعادن النانوية في ورقته البحثية الكلاسيكية عام 1857م. في حين أوضح الباحث (تيرنر) في ورقةٍ بحثيةٍ أخرى أن: "من المعروف جيداً عندما يتم وضع رقائق الذهب أو الفضة على سطحٍ زجاجيٍ ثم يتم تسخينه لدرجة حرارة أقل من الحرارة الحمراء (~ 500 درجةٍ مئويةٍ)، يحدث تغيرٌ ملحوظٌ في الخصائص، حيث يتم إتلاف استمرارية الطبقة المعدنية. وتكون النتيجة أن ينتقل الضوء الأبيض بحرية، ويتلاشى الانعكاس بصورة تلقائيةٍ نتيجةٍ لذلك، في حين تتزايد المقاومة الكهربائية.

جسيم نانوي
الجسيم النانوي (بالإنجليزية: Nanoparticle) يعرف الجسيم في علم التقنية النانوية على انه ذلك الشئ أو الكائن الصغيرالذي يتصرف بوصفه وحدةً كاملةً من حيث النقل والخصائص. وكذلك تصنيفها وفقا للحجم : من حيث القطر، كجسيمات دقيقة (بالإنجليزية: fine particles) تتراوح ما بين 100 و 2500 نانومتر، في حين تُصنف الجزيئات متناهية الصغر(بالإنجليزية: ultrafine particles)، من ناحية أخرى، هي بحجم يتراوح بين 1 و 100 نانومتر. وبصورةٍ مماثلةٍ للجزيئات متناهية الصغر، فإن الجسيمات النانوية تتراوح ما بين 1 و 100 نانومتر. وقد لا تحمل الجزيئات النانوية نفس خصائص المرتبطة بالحجم، والتي قد تختلف بصورةٍ واضحةٍ عن تلك التي يمكن ملاحظتها في الجسيمات الدقيقة أو المواد السائبة.
على الرغم من أن حجم معظم الجزيئات ستناسب مع العرض السابق، إلا أن الجزيئات الفردية غالباً ما لا يشار إليها على أنها جسيمات نانوية.
تتسم العناقيد النانوية بوجود بعدٍ واحدٍ على الأقل يتراوح بين 1 إلى 10 نانومتر بالإضافة إلى توزيع صغير الحجم. كما تعد المساحيق النانوية كتلاً من جسيماتٍ متناهيةٍ الصغر الجسيمات النانوية بالإضافة إلى العناقيد النانوية. وغالباً ما يشار إلى البلورات المفردة نانوية الحجم أو الجسيمات مفردة النطاق متناهية الصغر على أنها بلورات نانوية. وتتركز أبحاث الجسيمات النانوية حالياً حول الفائدة العلمية المكثفة، بسبب التنوع العريض للتطبيقات المحتملة في المجالات الطبية الحيوية والبصرية والإلكترونية.
صور (a, b, and c) باستخدام مجهر بث إلكتروني تمثل جسيمات سيليكا نانوية مسامية تم تجهيزها بمقياس القطر الخارجي: (a) 20 نانومتر، (b) 45 نانومتر و(c) 80 نانومتر. أما (d) تمثل صورةً مماثلةً للصورة (b) باستخدام مجهر ماسح إلكتروني. وتمثل مجموعة الصور تلك تكبيراً عالياً لجسيمات السيليكا.
و قد أسفرت مبادرة القتانة النانوية الوطنية عن توفير تمويلاً ضخماً سخياً لأبحاث الجزيئات النانوية في الولايات المتحدة.
طارق فتحي
طارق فتحي
المدير العام

عدد المساهمات : 2456
تاريخ التسجيل : 19/12/2010

https://alba7th.yoo7.com

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الرجوع الى أعلى الصفحة

- مواضيع مماثلة

 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى